Wnt-11 signaling leads to down-regulation of the Wnt/beta-catenin, JNK/AP-1 and NF-kappaB pathways and promotes viability in the CHO-K1 cells.

Experimental cell research(2008)

引用 0|浏览1
暂无评分
摘要
The Wnt family of glycoprotein growth factors controls a number of central cellular processes such as proliferation, differentiation and ageing. All the Wnt proteins analyzed so far either activate or inhibit the canonical beta-catenin signaling pathway that regulates transcription of the target genes. In addition, some of them activate noncanonical signaling pathways that involve components such as the JNK, heterotrimeric G proteins, protein kinase C, and calmodulin-dependent protein kinase II, although the precise signaling mechanisms are only just beginning to be revealed. We demonstrate here that Wnt-11 signaling is sufficient to inhibit not only the canonical beta-catenin mediated Wnt signaling but also JNK/AP-1 and NF-kappaB signaling in the CHO cells, thus serving as a noncanonical Wnt ligand in this system. Inhibition of the JNK/AP-1 pathway is mediated in part by the MAPK kinase MKK4 and Akt. Moreover, protein kinase C is involved in the regulation of JNK/AP-1 by Wnt-11, but not of the NF-kappaB pathway. Consistent with the central role of Akt, JNK and NF-kappaB in cell survival and stress responses, Wnt-11 signaling promotes cell viability. Hence Wnt-11 is involved in coordination of key signaling pathways.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要