Thrombin Receptor Signaling to Cytoskeleton Requires Hsp90

Journal of Biological Chemistry(2001)

引用 51|浏览4
暂无评分
摘要
Thrombin is a serine protease that evokes various cellular responses involved in injury and repair of the nervous system through the activation of protease-activated receptor-1 (PAR-1). Signals that modulate cell morphology precede most PAR-1 effects, but the initial signal transduction molecules are not known. Using the yeast two-hybrid system, we identified Hsp90, a chaperone with known signaling properties, as a binding partner of PAR-1. The interaction was confirmed by glutathione S-transferase pull-down, overlay, and co-immunoprecipitation assays. Morphological assays in mouse astrocytes were carried out to evaluate the importance of Hsp90 during cytoskeletal signaling. Reducing Hsp90 levels by antisense treatment or disruption of the Hsp90-PAR-1 complex by the Hsp90-specific drug geldanamycin attenuated thrombin-mediated astrocyte shape changes. Furthermore, overexpression of the PAR-1 cytoplasmic tail abrogated thrombin-induced cytoskeletal changes in neuronal cells. Treatment with geldanamycin specifically inhibited activation of RhoA without affecting thrombin-mediated intracellular calcium release, revealing the regulation of a distinct signaling pathway by Hsp90. Taken together, these studies demonstrate that Hsp90 may be essential for PAR-1-mediated signaling to the cytoskeleton.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要