Topological biosignatures: large-scale structure of chemical networks from biology and astrochemistry.

ASTROBIOLOGY(2012)

引用 16|浏览2
暂无评分
摘要
The chemical basis of life involves more than simply the presence of biological molecules; biochemical systems embody a complex network of reactions with characteristic topological features. At the same time, chemical complexity is also present in nonbiological contexts, inviting us to clarify the relationship between chemistry and life through comparative studies. This study examines chemical networks from biology (the metabolism of E. coli) and astronomy (gas-phase reactions in dark molecular clouds) to establish common topological features that may be generic for any complex chemical system, as well as clear differences that may be topological signatures of life. The biological and astrochemical networks exhibit different scaling behaviors, and the network motifs found in the two systems show similarities as well as significant differences. The PageRank algorithm was used to quantify the degree to which individual species act primarily as products or reactants; in the metabolic network, these two roles are nearly identical for most species, whereas the astrochemical network shows a clearer partitioning into reactants and products.
更多
查看译文
关键词
Network theory,Metabolism,Interstellar medium,Astrochemistry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要