A new real-time quantitative PCR for diagnosis and monitoring of HIV-1 group O infection.

JOURNAL OF CLINICAL MICROBIOLOGY(2012)

引用 33|浏览14
暂无评分
摘要
The correct diagnosis and monitoring of HIV-1 group O (HIV-O) infection are essential for appropriate patient management, for the prevention of mother-to-child transmission, and for the detection of dual HIV-M/HIV-O infections. HIV-O RNA quantification is currently possible with two commercial kits (from Abbott and Roche), which quantify HIV-M and HIV-O strains indifferently; therefore, they cannot be used for the specific identification of HIV-O infection. We designed a new real-time quantitative reverse transcription PCR (RT-qPCR assay) (INT-O), which we compared with our previous version, LTR-O, and with the Abbott RealTime HIV-1 kit. Specificity was assessed with 27 HIV-1 group M strains and the prototype strain of group P. Clinical performances were analyzed by using 198 stored plasma samples, representative of HIV-O genetic diversity. Analytical sensitivity, repeatability, and reproducibility were also determined. The detection limit of the INT-O assay was 40 copies/ml, and its specificity was 100%. The repeatability and reproducibility were excellent. Analysis of clinical samples showed a good correlation between the INT-O and LTR-O assays (r = 0.8240), with an improvement of analytical sensitivity. A good correlation was also obtained between the INT-O and Abbott assays (r = 0.8599) but with significantly higher values (0.19 logs) for the INT-O method, due to marked underquantifications for some patients. These results showed that HIV-O genetic diversity still has an impact on RNA quantification. The new assay, INT-O, allows both the specific diagnosis of HIV-O infection and the quantification of diverse HIV-O strains. Its detection limit is equivalent to that of commercial kits. This assay is cheap and suitable for use in areas in which strains of HIV-1 groups M and O cocirculate.
更多
查看译文
关键词
genotype,viral load,real time polymerase chain reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要