The influence of distributional kinetics into a peripheral compartment on the pharmacokinetics of substrate partitioning between blood and brain tissue

Journal of pharmacokinetics and pharmacodynamics(2011)

引用 3|浏览1
暂无评分
摘要
Development of CNS-targeted agents often focuses on identifying compounds with “good” CNS exposure (brain-to-blood partitioning >1). Some compounds undergoing enterohepatic recycling (ER) evidence a partition coefficient, K p,brain (expressed as C brain /C plasma ), that exceeds and then decreases to (i.e., overshoots) a plateau (distribution equilibrium) value, rather than increasing monotonically to this value. This study tested the hypothesis that overshoot in K p,brain is due to substrate residence in a peripheral compartment. Simulations were based on a 3-compartment model with distributional clearances between central and brain ( CL br ) and central and peripheral ( CL d ) compartments and irreversible clearance from the central compartment ( CL ). Parameters were varied to investigate the relationship between overshoot and peripheral compartment volume ( V p ), and how this relationship was modulated by other model parameters. Overshoot magnitude and duration were characterized as peak C brain / C plasma relative to the plateau value ( %OS ) and time to reach plateau ( TRP ). Except for systems with high CL d , increasing V p increased TRP and %OS . Increasing brain ( V br ) or central ( V c ) distribution volumes eliminated V p -related OS. Parallel increases in all clearances shortened TRP , but did not alter %OS . Increasing either CL or CL d individually increased %OS related to V p , while increasing CL br decreased %OS. Under realistic peripheral distribution scenarios, C brain / C plasma may overshoot substantially K p,brain at distribution equilibrium. This observation suggests potential for erroneous assessment of brain disposition, particularly for compounds which exhibit a large apparent V p , and emphasizes the need for complete understanding of distributional kinetics when evaluating brain uptake.
更多
查看译文
关键词
Blood–brain barrier,Tissue partitioning,Distributional kinetics,Central nervous system,Enterohepatic recycling,Valproic acid
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要