Mutagenesis of three conserved Glu residues in a bacterial homologue of the ND1 subunit of complex I affects ubiquinone reduction kinetics but not inhibition by dicyclohexylcarbodiimide.

BIOCHEMISTRY(2000)

引用 46|浏览3
暂无评分
摘要
Steady-state kinetics of the H+-translocating NADH:ubiquinone reductase (complex I) were analyzed in membrane samples from bovine mitochondria and the soil bacterium Paracoccus denitrificans. In both enzymes the calculated K-m, values, in the membrane lipid phase, for four different ubiquinone analogues were in the millimolar range. Both the structure and size of the hydrophobic side chain of the acceptor affected its affinity fur complex I. The ND1 subunit of bovine complex I is a mitochondrially encoded protein that binds the inhibitor dicyclohexylcarbodiimide (DCCD) covalently [Yagi and Hatefi (1988) J. Biol. Chem. 263, 16150-16155]. The NQO8 subunit of P. debitrificans complex I is a homologue of ND1, and within it three conserved Glu residues that could bind DCCD, E158, E212, and E247, were changed to either Asp or Gin and in the case of E212 also to Val, The DCCD sensitivity of the resulting mutants was, however, unaffected by the mutations. On the other hand, the ubiquinone reductase activity of the mutants was altered, and the mutations changed the interactions of complex I with short-chain ubiquinones, The implications of the results for the location of the ubiquinone reduction site in this enzyme are discussed.
更多
查看译文
关键词
kinetics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要