Group-II phospholipase A(2) enhances oxidized low density lipoprotein-induced macrophage growth through enhancement of GM-CSF release.

ATHEROSCLEROSIS(2000)

引用 8|浏览4
暂无评分
摘要
Inflammatory process plays an important role in the development and progression of atherosclerotic lesions. Recently, group-II phospholipase A(2) (PLA(2)), an inflammatory mediator, was reported to exist in human atherosclerotic lesions and to enhance the development of murine atherosclerotic lesions. Oxidized low density lipoprotein (Ox-LDL) stimulates the growth of several types of macrophages in vitro. Since proliferation of macrophages occurs in atherosclerotic lesions, it is possible to assume that the Ox-LDL-induced macrophage proliferation might be involved in the progression of atherosclerosis. In this study, the role of group-II PLA(2) in the Ox-LDL-induced macrophage growth was investigated using thioglycollate-elicited mouse peritoneal macrophages. Thioglycollate-elicited macrophages significantly expressed group-II PLA(2) and released it into the culture medium. The Ox-LDL-induced thymidine incorporation into thioglycollate-elicited macrophages was three times higher than that into resident macrophages, whereas under the same conditions, granulocyte/macrophage colony-stimulating factor (CM-CSF) equally induced thymidine incorporation into both types of macrophages. Moreover, the Ox-LDL-induced GM-CSF release from thioglycollate-elicited macrophages was significantly higher than that from resident macrophages. In addition, the Ox-LDL-induced thymidine incorporation into macrophages obtained from human group-II PLA(2) transgenic mice and the GM-CSF release from these cells were significantly higher than those from their negative littermates, and the Ox-LDL-induced thymidine incorporation into human group-II PLA, transgenic macrophages was significantly inhibited by a polyclonal anti-human group-II PLA(2) antibody. These results suggest that the expression of group-II PLA(2) in thioglycollate-elicited macrophages may play an enhancing role in the Ox-LDL-induced macrophage growth through the enhancement of the GM-CSF release. (C) 2000 Elsevier Science Ireland Ltd. All rights reserved.
更多
查看译文
关键词
oxidized LDL,macrophage growth,atherosclerosis,inflammation,phospholipase A(2),GM-CSF
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要