A theoretical model of the pressure field arising from asymmetric intraglottal flows applied to a two-mass model of the vocal folds.

JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA(2011)

引用 34|浏览4
暂无评分
摘要
A theoretical flow solution is presented for predicting the pressure distribution along the vocal fold walls arising from asymmetric flow that forms during the closing phases of speech. The resultant wall jet was analyzed using boundary layer methods in a non-inertial reference frame attached to the moving wall. A solution for the near-wall velocity profiles on the flow wall was developed based on a Falkner-Skan similarity solution and it was demonstrated that the pressure distribution along the flow wall is imposed by the velocity in the inviscid core of the wall jet. The method was validated with experimental velocity data from 7.5 times life-size vocal fold models, acquired for varying flow rates and glottal divergence angles. The solution for the asymmetric pressures was incorporated into a widely used two-mass model of vocal fold oscillation with a coupled acoustical model of sound propagation. Asymmetric pressure loading was found to facilitate glottal closure, which yielded only slightly higher values of maximum flow declination rate and radiated sound, and a small decrease in the slope of the spectral tilt. While the impact on symmetrically tensioned vocal folds was small, results indicate the effect becomes more significant for asymmetrically tensioned vocal folds. (C) 2011 Acoustical Society of America. [DOI: 10.1121/1.3586785]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要