Characterization of presynaptic septin complexes in mammalian hippocampal neurons.

BIOLOGICAL CHEMISTRY(2011)

引用 53|浏览2
暂无评分
摘要
Septins are GTPases that form heteromeric complexes and are linked to neurological disorders. Although several septin subcomplexes have been reported in various mammalian tissues, the cellular and subcellular distribution of these complexes is largely unexplored. Using antibodies against ten mammalian septins, we show that septins diverge with respect to their tissue distribution implying that septin complexes in various tissues have unique composition. Although all ten septins examined were expressed in brain tissue, we describe septin complex(es) including SEPT3, SEPT5, SEPT6, SEPT7 and SEPT11 that could be functional within the presynapse because, unlike other septins they: (1) showed an increase in expression from embryonic day 15 to postnatal day 70, (2) were abundantly expressed in axons and growth cones of developing hippocampal neurons, (3) were found in presynaptic terminals of mature synapses, (4) were enriched in a preparation of synaptic vesicles and (5) immunoprecipitated together from brain tissue and cultured nerve cells. Knockdown of SEPT5 or SEPT7 in developing hippocampal neurons impaired axon growth. Because septins are functionally linked to the cytoskeleton and vesicle traffic, presynaptic neuronal septin complexes could be important for ensuring proper axon development and neurotransmitter release.
更多
查看译文
关键词
exocytosis,GTPase,nerve terminal,neurite,polarity,synaptic vesicle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要