Sequence of the structural gene for granule-bound starch synthase of potato (Solarium tuberosum L.) and evidence for a single point deletion in the amf allele

Molecular & general genetics : MGG(1991)

引用 170|浏览0
暂无评分
摘要
The genomic sequence of the potato gene for starch granule-bound starch synthase (GBSS; “waxy protein”) has been determined for the wild-type allele of a monoploid genotype from which an amylose-free (amf) mutant was derived, and for the mutant part of the amf allele. Comparison of the wild-type sequence with a cDNA sequence from the literature and a newly isolated cDNA revealed the presence of 13 introns, the first of which is located in the untranslated leader. The promoter contains a G-box-like sequence. The deduced amino acid sequence of the precursor of GBSS shows a high degree of identity with monocot waxy protein sequences in the region corresponding to the mature form of the enzyme. The transit peptide of 77 amino acids, required for routing of the precursor to the plastids, shows much less identity with the transit peptides of the other waxy preproteins, but resembles the hydropathic distributions of these peptides. Alignment of the amino acid sequences of the four mature starch synthases with the Escherichia coli glgA gene product revealed the presence of at least three conserved boxes; there is no homology with previously proposed starch binding domains of other enzymes involved in starch metabolism. We report the use of chimeric constructs with wild-type and amf sequences to localize, via complementation experiments, the region of the amf allele in which the mutation resides. Direct sequencing of polymerase chain reaction products confirmed that the amf mutation is a deletion of a single AT basepair in the region coding for the transit peptide. Premature termination of translation as a result of this frameshift mutation results in a small peptide. However, a protein reacting with anti-GBSS serum, slightly larger than the wild-type mature GBSS, can be detected in a membrane fraction from amylose-free tubers. A possible explanation for this phenomenon will be discussed.
更多
查看译文
关键词
Frameshift, Potato, Starch, Transit peptide, Waxy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要