Transit Defect of Potassium-Chloride Co-transporter 3 Is a Major Pathogenic Mechanism in Hereditary Motor and Sensory Neuropathy with Agenesis of the Corpus Callosum

Journal of Biological Chemistry(2011)

引用 23|浏览12
暂无评分
摘要
Missense and protein-truncating mutations of the human potassium-chloride co-transporter 3 gene (KCC3) cause hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC), which is a severe neurodegenerative disease characterized by axonal dysfunction and neurodevelopmental defects. We previously reported that KCC3-truncating mutations disrupt brain-type creatine kinase-dependent activation of the co-transporter through the loss of its last 140 amino acids. Here, we report a novel and more distal HMSN/ACC-truncating mutation (3402C→T; R1134X) that eliminates only the last 17 residues of the protein. This small truncation disrupts the interaction with brain-type creatine kinase in mammalian cells but also affects plasma membrane localization of the mutant transporter. Although it is not truncated, the previously reported HMSN/ACC-causing 619C→T (R207C) missense mutation also leads to KCC3 loss of function in Xenopus oocyte flux assay. Immunodetection in Xenopus oocytes and in mammalian cultured cells revealed a decreased amount of R207C at the plasma membrane, with significant retention of the mutant proteins in the endoplasmic reticulum. In mammalian cells, curcumin partially corrected these mutant protein mislocalizations, with more protein reaching the plasma membrane. These findings suggest that mis-trafficking of mutant protein is an important pathophysiological feature of HMSN/ACC causative KCC3 mutations.
更多
查看译文
关键词
Chloride Transport,Genetic Diseases,Human Genetics,Intracellular Trafficking,Neurological Diseases,Potassium Transport,KCC3,SLC12
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要