Transient knock down of checkpoint kinase 1 in hematopoietic progenitors is linked to bone marrow toxicity.

Toxicology Letters(2011)

引用 4|浏览14
暂无评分
摘要
Checkpoint kinase 1 (Chk1) is required for both intra-S phase and G2/M checkpoints in cell cycle, and plays critical roles in maintaining genomic stability and transducing DNA damage response. Chk1 deficiency has been shown to inhibit T-cell differentiation and resulted in severe anemia in a Chk1 heterozygous mouse model. To date, there has been a good correlation between Chk1 inhibition and in vitro bone marrow toxicity among small molecule inhibitors. To better understand the role of Chk1 in hematopoiesis, we conducted transient Chk1 gene silencing in human bone marrow progenitor cells using siRNA and electroporation. At 48 h post electroporation, approximately 70% inhibition of Chk1 was confirmed using real-time RT-PCR and immunoblotting, which resulted in more than 60% reduction in cell count when compared to the non-specific siRNA control on day 6 post-electroporation. This result was confirmed using a colony forming unit assay, where reduced number in both erythroid and granulocyte colonies was observed with Chk1 siRNA treatment. The Chk1 gene inhibition in bone marrow progenitor cells resulted in significant induction of apoptosis, but not cell cycle arrest, as assessed using flow cytometry. In this study an effective method to knock down a gene of interest was established in hard-to-transfect hematopoietic stem cells. Furthermore, our results support a direct role of Chk1 in maintaining normal hematopoiesis in the bone marrow. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
更多
查看译文
关键词
Checkpoint kinase 1,Bone marrow suppression,RNAi
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要