Peptide-mediated disruption of calmodulin-cyclin E interactions inhibits proliferation of vascular smooth muscle cells and neointima formation.

CIRCULATION RESEARCH(2011)

引用 17|浏览3
暂无评分
摘要
Rationale: Cell cycle progression in vascular smooth muscle cells (VSMCs) is a therapeutic target for restenosis. Objective: Having discovered that calmodulin (CaM)-dependent cyclin E/CDK2 activity underlies Ca(2+) -sensitive G(1)-to-S phase transitions in VSMCs, we sought to explore the physiological importance of the CaM-cyclin E interaction. Methods and Results: A peptide based on the CaM binding sequence (CBS) of cyclin E was designed to interfere with CaM-cyclin E binding. Compared with control peptides, CBS blocked activating Thr160 phosphorylation of CDK2, decreased basal cyclin E/CDK2 activity, and eliminated Ca(2+) -sensitive cyclin E/CDK2 activity in nuclear extracts from mouse VSMCs. Nucleofection with CBS, or treatment with CBS conjugated to the HIV-1 TAT protein transduction domain to improve bioavailability, inhibited G(1)-to-S cell cycle progression in a dose-dependent manner. These effects were not observed with control peptides. TAT-CBS inhibited (3)H-thymidine incorporation in primary human aortic SMCs (HA-SMCs) in vitro, manifested greater transduction into HA-SMCs compared with endothelial cells in vitro, and limited decreased SM22 alpha expression, neointima formation, and medial thickening without affecting collagen deposition or reendothelialization in a mouse model of carotid artery injury in vivo. The antiproliferative effects of CBS remained evident in mouse embryonic fibroblasts derived from wild-type mice but not cyclin E1/E2 double knockout mice. Conclusions: A synthetic peptide designed to disrupt CaM-cyclin E binding inhibits Ca(2+)/CaM-dependent CDK2 activity, cell cycle progression, and proliferation in VSMCs and limits arterial remodeling following injury. Importantly, this effect appears to be cyclin E-dependent and may form the basis of a potentially novel therapeutic approach for restenosis. (Circ Res. 2011;108:1053-1062.)
更多
查看译文
关键词
vascular smooth muscle cell,cell cycle,restenosis,calmodulin,cyclin E/CDK2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要