Facile design and nanostructural evaluation of silver-modified titania used as disinfectant.

DALTON TRANSACTIONS(2011)

引用 21|浏览2
暂无评分
摘要
Fundamental research has been carried out to define optimal "green" synthesis conditions for the production of titania (TiO2) and silver (Ag) nanocomposites (TANCs) ranging from 12.7-22.8 nm in diameter. A bottom-up colloidal approach was employed to accurately control TANC monodispersity and composition. TANCs were found to be effective at inactivating Escherichia coli (E. coli) in water. The presence of Ag in the nanocomposites induced a decrease in TiO2 band gap energy, which favoured valence to conduction band electron transfer and allowed for electron excitation using visible light. Aggregation of ultra-fine particles was prevented through the use of a long-chain polymer as evidenced by electrophoretic mobility studies. The TANCs catalyzed oxidation of bacterial membranes and cell death or disinfection. Theoretically, the TANC mode of E. coli disinfection is via water photolysis, which results in production of hydroxyl radicals and hydrogen peroxide. These interact with the outer membrane polysaccharides and lipids, leading to lipid peroxidation, membrane weakening and resulted in cell death. Our overarching goals were to optimize the variables involved in TANC "green" synthesis and to characterize its nanostructure. High resolution (HR) transmission and scanning electron microscopic (TEM and SEM) studies demonstrated that TANCs were highly crystalline and mono-dispersive. Elemental composition of Ag and Ti, as measured by X-ray energy dispersive (EDS) and X-ray photoelectron spectroscopy (XPS) confirmed sample purity. Ultraviolet-visible (UV-VIS) spectroscopy showed that the energy band-gap of Ag modified TiO2 was in the visible range.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要