High-Throughput Characterization Of 10 New Minor Histocompatibility Antigens By Whole Genome Association Scanning

CANCER RESEARCH(2010)

引用 81|浏览14
暂无评分
摘要
Patients with malignant diseases can be effectively treated with allogeneic hematopoietic stem cell transplantation (allo-SCT). Polymorphic peptides presented in HLA molecules, the so-called minor histocompatibility antigens (MiHA), play a crucial role in antitumor immunity as targets for alloreactive donor T cells. Identification of multiple MiHAs is essential to understand and manipulate the development of clinical responses after allo-SCT. In this study, CD8(+) T-cell clones were isolated from leukemia patients who entered complete remission after allo-SCT, and MiHA-specific T-cell clones were efficiently selected for analysis of recognition of a panel of EBV-transformed B cells positive for the HLA restriction elements of the selected T-cell clones. One million single nucleotide polymorphisms (SNP) were determined in the panel cell lines and investigated for matching with the T-cell recognition data by whole genome association scanning (WGAs). Significant association with 12 genomic regions was found, and detailed analysis of genes located within these genomic regions revealed SNP disparities encoding polymorphic peptides in 10 cases. Differential recognition of patient-type, but not donor-type, peptides validated the identification of these MiHAs. Using tetramers, distinct populations of MiHA-specific CD8(+) T cells were detected, demonstrating that our WGAs strategy allows high-throughput discovery of relevant targets in antitumor immunity after allo-SCT. Cancer Res; 70(22); 9073-83. (C) 2010 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要