Regulation Of Exocytic Mode In Hippocampal Neurons By Intra-Bouton Calcium Concentration

JOURNAL OF PHYSIOLOGY-LONDON(2010)

引用 11|浏览4
暂无评分
摘要
Release of neurotransmitters from synaptic vesicles is a central event in synaptic transmission. Recent evidence suggests that synaptic vesicles fuse with the plasma membrane by multiple routes during exocytosis, but the regulation and physiological implications of this choice are unclear. At hippocampal synapses in culture, two modes of synaptic vesicle exocytosis can be distinguished by virtue of the rate and extent of loss of a fluorescent lipid marker (FM1-43). Here we investigate these two modes of exocytosis using fluorescence imaging of FM1-43, combined with quantitative Ca2+ imaging using Oregon green BAPTA-1 (OGB1), to examine how the balance of exocytic mode changes during a stimulus train. Our findings are twofold: that the full fusion mode becomes progressively favoured through the course of a 5 or 10 Hz stimulus train, and that this occurs in parallel with presynaptic accumulation of calcium. Blockade of calcium accumulation with AM-EGTA also prevents the conversion of exocytic mode. This conversion of exocytic mode may provide insight as to the mechanisms underpinning short term plasticity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要