The left and right ventricle of a patient with a R723G mutation of the beta-myosin heavy chain and severe hypertrophic cardiomyopathy show no differences in the expression of myosin mRNA.

CARDIOLOGY JOURNAL(2010)

引用 30|浏览1
暂无评分
摘要
Background In familial hypertrophic cardiomyopathy (FHC), asymmetric left ventricular (LV) hypertrophy has been considered to be the predominant phenotypic expression, whereas right ventricular (RV) involvement is still ambiguous In most cases, the right ventricle remains unaffected until secondary pulmonary hypertension develops Several FHC-causing mutations of genes encoding sarcomere-related proteins have been identified which are transmitted in an autosomal-dominant manner Methods We report the case of a 61 year old member of a Catalan family with a Arg723Gly missense mutation of the beta-myosin heavy chain (beta-MHC), that is associated with a malignant phenotype characterized by sudden cardiac death and heart failure Because of progressive systolic LV dysfunction, the patient received a heart transplant in 2003 Results Molecular analysis of the myocardial tissue of the explanted heart, taken from the left and right ventricle, showed a similar deviation of the ratio of mutant vs wild type mRNA of the beta-MHC of 71 8 +/- 5% and 68 5 +/- 3%, respectively This finding was confirmed for LV biopsies of this patient on protein level, showing a similar proportion of mutated beta-myosin But since the patient is heterozygous for the beta-MHC mutation and the mutation is located in a coding region, the relative increase of the expression of the mutant allele is unexpected It has been demonstrated before by our group for several beta-MHC mutations that the relative abundance of mutated mRNA/protein correlates with the clinical severity of the disease But since the right ventricle shows no (or only minor) manifestation in terms of hypertrophy or dysfunction, the level of mRNA and protein expression is not the only factor responsible for the development of the phenotype of FHC Conclusions Several mechanisms through which cardiac stresses may incite maladaptive cardiac remodeling primarily of the left ventricle that result in myocardial hypertrophy and heart failure are proposed One of those triggers could be the enhanced work load of the left ventricle, especially if a LV outflow tract gradient is present, in contrast to the lesser demands to the right ventricle which is adapted to the low pressure system of the pulmonary circulation Further studies are needed to confirm the results of this case, as well as functional studies involving both ventricles (Cardiol J 2010, 17, 5 518-522)
更多
查看译文
关键词
hyperthropic cardiomyopathy,molecular biology,hypertrophy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要