A CMOS Neural Interface for a Multichannel Vestibular Prosthesis.

IEEE Trans. Biomed. Circuits and Systems(2016)

引用 32|浏览12
暂无评分
摘要
We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 μs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 (°)/s for the MVP2 and 2.0-14.2 (°)/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2.
更多
查看译文
关键词
prosthesis,application specific integrated circuit (asic),vestibular implant,vestibulo-ocular reflex (vor),neural engineering,electrical stimulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要