STAG: spintronic-tape architecture for GPGPU cache hierarchies

ISCA(2014)

引用 86|浏览66
暂无评分
摘要
General-purpose Graphics Processing Units (GPGPUs) are widely used for executing massively parallel workloads from various application domains. Feeding data to the hundreds to thousands of cores that current GPGPUs integrate places great demands on the memory hierarchy, fueling an ever-increasing demand for on-chip memory. In this work, we propose STAG, a high density, energy-efficient GPGPU cache hierarchy design using a new spintronic memory technology called Domain Wall Memory (DWM). DWMs inherently offer unprecedented benefits in density by storing multiple bits in the domains of a ferromagnetic nanowire, which logically resembles a bit-serial tape. However, this structure also leads to a unique challenge that the bits must be sequentially accessed by performing "shift" operations, resulting in variable and potentially higher access latencies. To address this challenge, STAG utilizes a number of architectural techniques : (i) a hybrid cache organization that employs different DWM bit-cells to realize the different memory arrays within the GPGPU cache hierarchy, (ii) a clustered, bit-interleaved organization, in which the bits in a cache block are spread across a cluster of DWM tapes, allowing parallel access, (iii) tape head management policies that predictively configure DWM arrays to reduce the expected number of shift operations for subsequent accesses, and (iv) a shift aware pro- motion buffer (SaPB), in which accesses to the DWM cache are predicted based on intra-warp locality, and locations that would incur a large shift penalty are promoted to a smaller buffer. Over a wide range of benchmarks from the Rodinia, IS- PASS and Parboil suites, STAG achieves significant benefits in performance (12.1% over SRAM and 5.8% over STT-MRAM) and energy (3.3X over SRAM and 2.6X over STT-MRAM)
更多
查看译文
关键词
cache storage,ferromagnetic materials,graphics processing units,magnetoelectronics,nanowires,DWM,GPGPU cache hierarchies,STAG,cache organization,domain wall memory,ferromagnetic nanowire,general-purpose graphics processing units,memory hierarchy,on-chip memory,spintronic-tape architecture,
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要