A Comprehensive Understanding Of The Efficacy Of N-Ring See Hardening Methodologies In Sige Hbts

Nuclear Science, IEEE Transactions(2010)

引用 9|浏览2
暂无评分
摘要
We investigate the efficacy of mitigating radiation-based single event effects (SEE) within circuits incorporating SiGe heterojunction bipolar transistors (HBTs) built with an N-Ring, a transistor-level layout-based radiation hardened by design (RHBD) technique. Previous work of single-device ion-beam induced charge collection (IBICC) studies has demonstrated significant reductions in peak collector charge collection and sensitive area for charge collection; however, few circuit studies using this technique have been performed. Transient studies performed with Sandia National Laboratory's (SNL) 36 MeV O-16 microbeam on voltage references built with N-Ring SiGe HBTs have shown mixed results, with reductions in the number of large voltage disruptions in addition to new sensitive areas of low-level output voltage disturbances. Similar discrepancies between device-level IBICC results and circuit measurements are found for the case of digital shift registers implemented with N-Ring SiGe HBTs irradiated in a broadbeam environment at Texas A&M's Cyclotron Institute. The error cross-section curve of the N-Ring based register is found to be larger at larger ion LETs than the standard SiGe register, which is clearly counter-intuitive. We have worked to resolve the discrepancy between the measured circuit results and the device-level IBICC measurements, by re-measuring single-device N-Ring SiGe HBTs using a time-resolved ion beam induced charge (TRIBIC) set-up that allows direct capture of nodal transients. Coupling these measurements with full 3-D TCAD simulations provides complete insight into the origin of transient currents in an N-Ring SiGe HBT. The detailed structure of these transients and their bias dependencies are discussed, together with the ramifications for the design of space-borne analog and digital circuits using SiGe HBTs.
更多
查看译文
关键词
HBT,N-ring hardening,RHBD,SEE,SEU,SiGe,silicon-germanium technology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要