Fast Edge Detection Using Structured Forests

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE(2015)

引用 1085|浏览254
暂无评分
摘要
Edge detection is a critical component of many vision systems, including object detectors and image segmentation algorithms. Patches of edges exhibit well-known forms of local structure, such as straight lines or T-junctions. In this paper we take advantage of the structure present in local image patches to learn both an accurate and computationally efficient edge detector. We formulate the problem of predicting local edge masks in a structured learning framework applied to random decision forests. Our novel approach to learning decision trees robustly maps the structured labels to a discrete space on which standard information gain measures may be evaluated. The result is an approach that obtains realtime performance that is orders of magnitude faster than many competing state-of-the-art approaches, while also achieving state-of-the-art edge detection results on the BSDS500 Segmentation dataset and NYU Depth dataset. Finally, we show the potential of our approach as a general purpose edge detector by showing our learned edge models generalize well across datasets.
更多
查看译文
关键词
Edge detection, segmentation, structured random forests, real-time systems, visual features
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要