Interpreting Natural Language Instructions Using Language, Vision, And Behavior

ACM Transactions on Interactive Intelligent Systems(2014)

引用 4|浏览15
暂无评分
摘要
We define the problem of automatic instruction interpretation as follows. Given a natural language instruction, can we automatically predict what an instruction follower, such as a robot, should do in the environment to follow that instruction? Previous approaches to automatic instruction interpretation have required either extensive domain-dependent rule writing or extensive manually annotated corpora. This article presents a novel approach that leverages a large amount of unannotated, easy-to-collect data from humans interacting in a game-like environment. Our approach uses an automatic annotation phase based on artificial intelligence planning, for which two different annotation strategies are compared: one based on behavioral information and the other based on visibility information. The resulting annotations are used as training data for different automatic classifiers. This algorithm is based on the intuition that the problem of interpreting a situated instruction can be cast as a classification problem of choosing among the actions that are possible in the situation. Classification is done by combining language, vision, and behavior information. Our empirical analysis shows that machine learning classifiers achieve 77% accuracy on this task on available English corpora and 74% on similar German corpora. Finally, the inclusion of human feedback in the interpretation process is shown to boost performance to 92% for the English corpus and 90% for the German corpus.
更多
查看译文
关键词
Design,Algorithms,Performance,Natural language interpretation,multimodal understanding,action recognition,visual feedback,situated virtual agent,unsupervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要