Isolation of a novel lodging resistance QTL gene involved in strigolactone signaling and its pyramiding with a QTL gene involved in another mechanism.

Molecular Plant(2015)

引用 80|浏览2
暂无评分
摘要
Lodging has been a major roadblock to attaining increased crop productivity. In an attempt to understand the mechanism for culm strength in rice, we isolated an effective quantitative trait locus (QTL), STRONG CULM3 (SCM3), the causal gene of which is identical to rice TEOSINTE BRANCHED1 (OsTB1), a gene previously reported to positively control strigolactone (SL) signaling. A near-isogenic line (NIL) carrying SCM3 showed enhanced culm strength and increased spikelet number despite the expected decrease in tiller number, indicating that SL also has a positive role in enhancing culm strength and spikelet number. We produced a pyramiding line carrying SCM3 and SCM2, another QTL encoding APO1 involved in panicle development. The NIL-SCM2+SCM3 showed a much stronger culm than NIL-SCM2 and NIL-SCM3 and an increased spikelet number caused by the additive effect of these QTLs. We discuss the importance of utilizing suitable alleles of these STRONG CULM QTLs without inducing detrimental traits for breeding.
更多
查看译文
关键词
culm,OsTB1,strigolactone,lodging resistance,quantitative trait loci
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要