Modifying welding process parameters can reduce the neurotoxic potential of manganese-containing welding fumes.

Toxicology(2015)

引用 32|浏览29
暂无评分
摘要
Welding fumes (WF) are a complex mixture of toxic metals and gases, inhalation of which can lead to adverse health effects among welders. The presence of manganese (Mn) in welding electrodes is cause for concern about the potential development of Parkinson’s disease (PD)-like neurological disorder. Consequently, from an occupational safety perspective, there is a critical need to prevent adverse exposures to WF. As the fume generation rate and physicochemical characteristics of welding aerosols are influenced by welding process parameters like voltage, current or shielding gas, we sought to determine if changing such parameters can alter the fume profile and consequently its neurotoxic potential. Specifically, we evaluated the influence of voltage on fume composition and neurotoxic outcome. Rats were exposed by whole-body inhalation (40mg/m3; 3h/day×5 d/week×2 weeks) to fumes generated by gas–metal arc welding using stainless steel electrodes (GMA-SS) at standard/regular voltage (25V; RVSS) or high voltage (30V; HVSS). Fumes generated under these conditions exhibited similar particulate morphology, appearing as chain-like aggregates; however, HVSS fumes comprised of a larger fraction of ultrafine particulates that are generally considered to be more toxic than their fine counterparts. Paradoxically, exposure to HVSS fumes did not elicit dopaminergic neurotoxicity, as monitored by the expression of dopaminergic and PD-related markers. We show that the lack of neurotoxicity is due to reduced solubility of Mn in HVSS fumes. Our findings show promise for process control procedures in developing prevention strategies for Mn-related neurotoxicity during welding; however, it warrants additional investigations to determine if such modifications can be suitably adapted at the workplace to avert or reduce adverse neurological risks.
更多
查看译文
关键词
ANOVA,Ccl2,cDNA,Cu,Dmt1,Fe,FESEM,Gfap,GMA-SS,HVSS,ICP-AES,MMAD (GSD),Mn,MB,MOUDI,MRI,mRNA,Ni,Nos2,OB,Park5,Park7,Ppia,PCR,PD,RNA,RVSS,STR,Th,T-PER,TLV-TWA,Tnfa,Tuba,WF,Zn
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要