Coordinated regulation of melatonin synthesis and degradation genes in rice leaves in response to cadmium treatment.

JOURNAL OF PINEAL RESEARCH(2015)

引用 130|浏览3
暂无评分
摘要
We investigated the expression patterns of genes involved in melatonin synthesis and degradation in rice leaves upon cadmium (Cd) treatment and the subcellular localization sites of melatonin 2-hydroxylase (M2H) proteins. The Cd-induced synthesis of melatonin coincided with the increased expression of melatonin biosynthetic genes including tryptophan decarboxylase (TDC), tryptamine 5-hydroxylase (T5H), and N-acetylserotonin methyltransferase (ASMT). However, the expression of serotonin N-acetyltransferase (SNAT), the penultimate gene in melatonin biosynthesis, was downregulated, suggesting that melatonin synthesis was counter-regulated by SNAT. Notably, the induction of melatonin biosynthetic gene expression was coupled with the induction of four M2H genes involved in melatonin degradation, which suggests that genes for melatonin synthesis and degradation are coordinately regulated. The induced M2H gene expression was correlated with enhanced M2H enzyme activity. Three of the M2H proteins were localized to the cytoplasm and one M2H protein was localized to chloroplasts, indicating that melatonin degradation occurs both in the cytoplasm and in chloroplasts. The biological activity of 2-hydroxymelatonin in the induction of the plant defense gene expression was 50% less than that of melatonin, which indicates that 2-hydroxymelatonin may be a metabolite of melatonin. Overall, our data demonstrate that melatonin synthesis occurs in parallel with melatonin degradation in both chloroplasts and cytoplasm, and the resulting melatonin metabolite 2-hydroxymelatonin also acts as a signaling molecule for defense gene induction.
更多
查看译文
关键词
2-hydroxymelatonin,2-oxoglutarate-dependent dioxygenases,cadmium,melatonin 2-hydroxygenase,subcellular localization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要