Enhanced field-emission and red lasing of ordered CdSe nanowire branched arrays

JOURNAL OF PHYSICAL CHEMISTRY C(2011)

引用 34|浏览16
暂无评分
摘要
Ordered CdSe nanowire branched arrays were designed and synthesized while merging two particular structural features within a single nanomaterial. This novel CdSe nanostructure combines a branched structure and ordered single-crystalline character. The stems and branches consist of wurtzite CdSe single crystals. When measuring field-emission properties, the CdSe novel nanostructure demonstrated a low turn-on field at 4.3 +/- 0.2 V mu m(-1) for the current densities of 10 mu A cm(-2), high field-enhancement factor (1160 +/- 50), and long emission stability. It indicates that the CdSe novel nanostructure could potentially be used as field emitters. The excellent field-emission performance is due to the unique morphology of CdSe, e.g., high structural order, branched structure, perfect single-crystallinity, and tapered nanotips. In addition, red lasing, in a range 700-720 nm, of the ordered CdSe nanowire branched arrays were demonstrated. The nature of the observed lasing emission accords with coherent random lasing behavior. A lower lasing threshold was achieved due to the homoepitaxial growth of CdSe nanowire branches on the CdSe microrods stems as well.
更多
查看译文
关键词
null
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要