Measure Synchronization In A Two-Species Bosonic Josephson Junction

PHYSICAL REVIEW E(2013)

引用 22|浏览26
暂无评分
摘要
Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semiclassical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (the zero-phase mode) and four in the self-trapping regime (the pi-phase mode), are clearly shown. Systematic investigations of the common features behind these different scenarios are performed. We show that the average energies of the two species merge at the MS transition point. The scaling of the power law near the MS transition is verified and the critical exponent is 1/2 for all of the different scenarios for MS. We also illustrate MS in a three-dimensional phase space; from this illustration, more detailed information on the dynamical process can be obtained. In particular, by analyzing the Poincare sections with changing interspecies interactions, we find that the two-species BJJ exhibits separatrix crossing behavior at the MS transition point and such behavior depicts the general mechanism behind the different scenarios for the MS transitions. The new critical behavior found in a two-species BJJ is expected to be found in real systems of atomic Bose gases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要