Microstructured nematic liquid crystalline elastomer surfaces with switchable wetting properties

ADVANCED FUNCTIONAL MATERIALS(2013)

引用 67|浏览17
暂无评分
摘要
Inspired by the lotus leaf, scientists have developed many superhydrophobic surfaces, some of which show remarkable switching between hydrophobic and hydrophilic state under external stimuli. However, the switch usually relies on the change of chemical properties rather than on the modification of the topographic structure of the surface. In this paper, the roughness-change-related switchable wetting properties of microstructured responsive surfaces made of nematic liquid crystalline elastomers (LCEs) is reported. First, various carbonate LC monomers and side-on LCEs are synthesized with low nematic-to-isotropic transition temperature, TNI. Then, LCEs prepared from 3-vinylcarbonyloxypropyl 2,5-di(4-octyloxybenzoyloxy)benzoate monomer, with TNI of 76 degrees C and contraction of 34% are used to construct a surface covered with micropillar arrays by using a replica molding technique. The contraction of the micropillars induces a reversible roughness change of the microstructured surface. Water contact angle of this microstructured surface changed with temperature, indicating a successful approach at building a surface with switchable wetting properties.
更多
查看译文
关键词
liquid crystalline elastomers,microstructured surface,switchable wetting properties,roughness,carbonate liquid crystalline monomer
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要