Plasma-enhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy.

ANALYTICAL CHEMISTRY(2013)

引用 40|浏览5
暂无评分
摘要
In this study, antibody immobilization using a microwave-induced H2O/Ar plasma pretreatment was achieved for the first time. Plasma was used to activate the surface of a capillary-based immunosensor by increasing the density of silicon hydroxyls and dangling bonds to ensure better silanization. The capture antibodies were covalently immobilized after the silanized surface reacted with glutaraldehyde and antibodies. A Cy3-labeled detection antibody was used in combination with the antigen captured by the immunosensor to complete the sandwich-type immunoassay, and the signals were measured using a laser-induced fluorescence system. Microwave-induced H2O/Ar plasma pretreatment of the carcinoembryonic antigen (CEA) immunosensor improved the antibody immobilization, and there was an obvious improvement in the linear detection range, i.e., 1 order of magnitude compared with a commercial enzyme-linked immunosorbent assay (ELISA). This novel immobilization method dramatically improved the detection limit (0.5 pmol/L CEA) and sensitivity. Assay validation studies indicated that the correlation coefficient reached 0.9978, and the relative standard deviations were <7% for all samples, with recoveries of 99.7-107.1%. Furthermore, the immunosensor was applied successfully to CEA determination in actual saliva specimens with high sensitivity, acceptable precision, and reasonable accuracy. This enhanced CEA immunosensor based on microwave-induced H2O/Ar plasma was demonstrated to be a sensitive tool for CEA diagnostics.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要