Drug release analysis and optimization for drug-eluting stents.

SCIENTIFIC WORLD JOURNAL(2013)

引用 5|浏览27
暂无评分
摘要
The drug release analysis and optimization for drug-eluting stents in the arterial wall are studied, which involves mechanics, fluid dynamics, and mass transfer processes and design optimization. The Finite Element Method (FEM) is used to analyze the process of drug release in the vessels for drug-eluting stents (DES). Kriging surrogate model is used to build an approximate function relationship between the drug distribution and the coating parameters, replacing the expensive FEM reanalysis of drug release for DES in the optimization process. The diffusion coefficients and the coating thickness are selected as design variables. An adaptive optimization approach based on kriging surrogate model is proposed to optimize the lifetime of the drug in artery wall. The adaptive process is implemented by an infilling sampling criterion named Expected Improvement (EI), which is used to balance local and global search and tends to find the global optimal design. The effect of coating diffusivity and thickness on the drug release process for a typical DES is analyzed by means of FEM. An implementation of the optimization method for the drug release is then discussed. The results demonstrate that the optimized design can efficiently improve the efficacy of drug deposition and penetration into the arterial walls.
更多
查看译文
关键词
pharmacokinetics,diffusion,algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要