Two Major Facilitator Superfamily Sugar Transporters from Trichoderma reesei and Their Roles in Induction of Cellulase Biosynthesis

Journal of Biological Chemistry(2013)

引用 122|浏览14
暂无评分
摘要
Background: The molecular mechanism underlying the regulation of cellulase production by T. reesei is unclear. Results: The absence of sugar transporter Stp1 enhanced cellulase gene induction whereas the absence of Crt1 abolished cellulase gene expression. Conclusion: Crt1 is essential in cellulase gene induction independent of intracellular sugar delivery. Significance: These data shed light on the mechanism by which T. reesei senses and transmits cellulose signal.Proper perception of the extracellular insoluble cellulose is key to initiating the rapid synthesis of cellulases by cellulolytic Trichoderma reesei. Uptake of soluble oligosaccharides derived from cellulose hydrolysis represents a potential point of control in the induced cascade. In this study, we identified a major facilitator superfamily sugar transporter Stp1 capable of transporting cellobiose by reconstructing a cellobiose assimilation system in Saccharomyces cerevisiae. The absence of Stp1 in T. reesei resulted in differential cellulolytic response to Avicel versus cellobiose. Transcriptional profiling revealed a different expression profile in the stp1 strain from that of wild-type strain in response to Avicel and demonstrated that Stp1 somehow repressed induction of the bulk of major cellulase and hemicellulose genes. Two other putative major facilitator superfamily sugar transporters were, however, up-regulated in the profiling. Deletion of one of them identified Crt1 that was required for growth and enzymatic activity on cellulose or lactose, but was not required for growth or hemicellulase activity on xylan. The essential role of Crt1 in cellulase induction did not seem to rely on its transporting activity because the overall uptake of cellobiose or sophorose by T. reesei was not compromised in the absence of Crt1. Phylogenetic analysis revealed that orthologs of Crt1 exist in the genomes of many filamentous ascomycete fungi capable of degrading cellulose. These data thus shed new light on the mechanism by which T. reesei senses and transmits the cellulose signal and offers potential strategies for strain improvement.
更多
查看译文
关键词
Cellulase,Fungi,Gene Transcription,Sugar Transport,Transporters,Trichoderma reesei
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要