The Tumor Suppressor Kinase LKB1 Activates the Downstream Kinases SIK2 and SIK3 to Stimulate Nuclear Export of Class IIa Histone Deacetylases

Journal of Biological Chemistry(2013)

引用 83|浏览14
暂无评分
摘要
Histone deacetylases 4 (HDAC4), -5, -7, and -9 form class IIa within the HDAC superfamily and regulate diverse physiological and pathological cellular programs. With conserved motifs for phosphorylation-dependent 14-3-3 binding, these deacetylases serve as novel signal transducers that are able to modulate histone acetylation and gene expression in response to extracellular cues. Here, we report that in a PKA-sensitive manner the tumor suppressor kinase LKB1 acts through salt-inducible kinase 2 (SIK2) and SIK3 to promote nucleocytoplasmic trafficking of class IIa HDACs. Both SIK2 and SIK3 phosphorylate the deacetylases at the conserved motifs and stimulate 14-3-3 binding. SIK2 activates MEF2-dependent transcription and relieves repression of myogenesis by the deacetylases. Distinct from SIK2, SIK3 induces nuclear export of the deacetylases independent of kinase activity and 14-3-3 binding. These findings highlight the difference among members of the SIK family and indicate that LKB1-dependent SIK activation constitutes an important signaling module upstream from class IIa deacetylases for regulating cellular programs controlled by MEF2 and other transcription factors.
更多
查看译文
关键词
Histone Deacetylase,Intracellular Trafficking,Phosphorylation,Protein Kinases,Signal Transduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要