Sensitivity of the mott-schottky analysis in organic solar cells

JOURNAL OF PHYSICAL CHEMISTRY C(2012)

引用 254|浏览5
暂无评分
摘要
The application of Mott-Schottky analysis to capacitance voltage measurements of polymer:fullerene solar cells is a frequently used method to determine doping densities and built-in voltages, which have important implications for understanding the device physics of these cells. Here we compare drift-diffusion simulations with experiments to explore the influence and the detection limit of doping in situations where device thickness and doping density are too low for the depletion approximation to be valid. The results of our simulations suggest that the typically measured values on the order of 5 x 10(16) cm(-3) for doping density in thin films of 100 nm or lower may not be reliably determined from capacitance measurements and could originate from a completely intrinsic active layer. In addition, we explain how the violation of the depletion approximation leads to a strong underestimation of the actual built-in voltage by the built-in voltage V-MS determined by Mott-Schottky analysis.
更多
查看译文
关键词
null
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要