Fabrication and characterization of TiO2–ZnO composite nanofibers

A.F. Lotus, S.N. Tacastacas, M.J. Pinti, L.A. Britton,N. Stojilovic, R.D. Ramsier,G.G. Chase

Physica E: Low-dimensional Systems and Nanostructures(2011)

引用 21|浏览4
暂无评分
摘要
Tetraisopropyl titanate, zinc acetate dihydrate, and polyvinylpyrrolidone (PVP) were mixed to obtain a composite solution for producing TiO2–ZnO nanofibers. Electrospinning and subsequent calcination at 973K were employed to produce composite metal-oxide nanofibers with diameters ranging from 50 to 150nm. Characterization of the TiO2–ZnO composite nanofibers was carried out by thermogravimetric analysis (TGA), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (XEDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and ultraviolet–visible (UV–vis) spectrophotometry. TGA reveals a total weight loss of 49% and no change in mass above 873K. The nanofibers are predominantly made of titania and exhibit two different energy band gap values of 3.0 and 3.5eV. Our findings indicate that in the composite TiO2–ZnO nanofibers three different phases (anatase and rutile TiO2 and wurtzite ZnO) can co-exist and retain their individual characteristic properties.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要