Characterization of nerve growth factor binding to embryonic rat spinal cord neurons.

JOURNAL OF NEUROSCIENCE RESEARCH(1990)

引用 13|浏览9
暂无评分
摘要
The binding of iodinated beta-nerve growth factor, [125I]-NGF, to embryonic (E16) rat spinal cord cells, was investigated to characterize the binding properties and cellular distribution of nerve growth factor receptors. Spinal cord cells prepared without trypsin yielded two classes of NGF binding sites with Kd's of 3 x 10(-11) M and 4 x 10(-9) M. Fractionation of the cells by discontinuous gradients composed of 8%, 12%, and 17% metrizamide was used to separate motoneurons from other cell types. The motoneuron enriched fraction (8% metrizamide) contained approximately 10% of the cells and 64% of the choline acetyltransferase (ChAT) activity. In contrast, the 12% metrizamide fraction contained most (51%) of the cells and 36% of the ChAT activity, while the 17% metrizamide fraction contained the remainder of the cells and negligible amounts of ChAT activity. Characterization of [125I]-NGF binding to each metrizamide fraction showed that the motoneuron-enriched fraction exhibited both high and low affinity binding sites, while the other metrizamide fractions exhibited only the low affinity binding sites. These findings indicate that although low affinity NGF receptors appear to be relatively evenly distributed amongst embryonic rat spinal cord cells, high affinity NGF receptors are found primarily on motoneurons.
更多
查看译文
关键词
nerve growth factor receptors,kinetic analysis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要