Spatiotemporal characterization of paced cardiac activation with body surface potential mapping and self-organizing maps.

PHYSIOLOGICAL MEASUREMENT(2003)

引用 9|浏览7
暂无评分
摘要
In this study self-organizing maps (SOM) were utilized for spatiotemporal analysis and classification of body surface potential mapping (BSPM) data. Altogether 86 cardiac depolarization (QRS) sequences paced by a catheter in 18 patients were included. Spatial BSPM distributions at every 5 ms over the QRS complex were first presented to an untrained SOM. The teaming process of the SOM units organized the maps in such a way that similar BSPMs are represented in particular areas of the SOM network. Thereafter, time trajectories and distance maps were created on the trained SOM from sequential maps in a selected paced QRS. The trajectories and distance maps can be applied as such for the localization of abnormal ventricular activation, as well as quantitative input for statistical classification. The results indicate that the method has potential for locating endocardial sites of abnormal ventricular activation, despite the patient material being too limited to provide a reliable statistical evaluation of the source localization accuracy.
更多
查看译文
关键词
body surface potential mapping,neural networks,cardiac pacing,ventricular tachycardia
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要