Time-resolved X-ray spectroscopy of deeply buried tracer layers as a density and temperature diagnostic for the fast ignitor

LASER AND PARTICLE BEAMS(1998)

引用 19|浏览6
暂无评分
摘要
The fast ignitor concept for inertial confinement fusion relies on the generation of hot electrons, produced by a short-pulse ultrahigh intensity laser, which propagate through high-density plasma to deposit their energy in the compressed fuel core and heat it to ignition. In preliminary experiments designed to investigate deep heating of high-density matter, we used a 20 joule, 0.5-30 ps laser to heat solid targets, and used emission spectroscopy to measure plasma temperatures and densities achieved at large depths (2-20 microns) away from the initial target surface. The targets consisted of an Al tracer layer buried within a massive CH slab; H-like and He-like line emission was then used to diagnose plasma conditions. We observe spectra from tracer layers buried up to 20 microns deep, measure emission durations of up to 200 ps, measure plasma temperatures up to T-e = 650 eV, and measure electron densities above 10(23) cm(-3). Analysis is in progress, but the data are in reasonable agreement with heating simulations when space-charge induced inhibition is included in hot-electron transport, and this supports the conclusion that the deep heating is initiated by hot electrons.
更多
查看译文
关键词
x ray spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要