Inherent limitations of hybrid transactional memory

Distributed Computing(2017)

引用 4|浏览116
暂无评分
摘要
Several hybrid transactional memory (HyTM) schemes have recently been proposed to complement the fast, but best-effort nature of hardware transactional memory with a slow, reliable software backup. However, the costs of providing concurrency between hardware and software transactions in HyTM are still not well understood. In this paper, we propose a general model for HyTM implementations, which captures the ability of hardware transactions to buffer memory accesses. The model allows us to formally quantify and analyze the amount of overhead (instrumentation) caused by the potential presence of software transactions. We prove that (1) it is impossible to build a strictly serializable HyTM implementation that has both uninstrumented reads and writes, even for very weak progress guarantees, and (2) the instrumentation cost incurred by a hardware transaction in any progressive opaque HyTM is linear in the size of the transaction’s data set. We further describe two implementations which exhibit optimal instrumentation costs for two different progress conditions. In sum, this paper proposes the first formal HyTM model and captures for the first time the trade-off between the degree of hardware-software TM concurrency and the amount of instrumentation overhead.
更多
查看译文
关键词
hardware transactional memory,Instrumentation,Lower bounds
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要