Upgrades to the Flagstaff Astrometric Scanning Transit Telescope: A Fully Automated Telescope for Astrometry

ASTRONOMICAL JOURNAL(2003)

引用 16|浏览13
暂无评分
摘要
The Flagstaff Astrometric Scanning Transit Telescope (FASTT) is a fully automated telescope that takes about 41,000 CCD frames of data a year for various research projects. All aspects of the telescope's operation have been automated (e.g., target selection, observing, reduction of data, and collation of results), and manpower needs are now under one person per year, mostly involved with routine maintenance and the dissemination of data. This paper describes the FASTT instrumental system, methods used with its automated operation, and the various FASTT research projects. Among the projects, astrometry is provided in support of various spacecraft missions, to predict occultation events, calculate dynamical masses for selective asteroids, and improve the ephemerides for thousands of asteroids, the planets Jupiter to Pluto, and 17 satellites of Jupiter through Neptune. Although most of the FASTT observing program involves the solar system, FASTT stellar astrometry was used to set up a number of astrometric calibration regions along the celestial equator, verify the Hipparcos link to the International Celestial Reference Frame, determine accurate positions for a large sample of radio stars, and investigate systematic errors in the FK5 star catalog. Furthermore, the FASTT produces accurate magnitudes that are being used to investigate the shapes of thousands of asteroids. By the end of year 2003, the FASTT will have produced over 190,000 positions of solar system objects in a program to provide a very large and homogeneous database for each object that will extend over many years and include positions accurate to +/-47 to +/-300 mas, depending on the magnitude of each observed object (3.5 < V < 17.5). Moreover, extensive efforts have been undertaken to improve the systematic accuracy of FASTT equatorial positions by applying corrections in the reductions for differential color refraction, distortions in the focal plane, and correcting for a positional error that is dependent on magnitude. The systematic accuracy of FASTT observations is now about +/-20 mas in both right ascension and declination. FASTT data have contributed very significantly to recent successful spacecraft missions and to a dramatic improvement in the predictions made for occultation events.
更多
查看译文
关键词
astrometry,instrumentation : detectors,methods : data analysis,methods : observational,techniques : image processing,techniques : photometric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要