Chip-calorimetric evaluation of the efficacy of antibiotics and bacteriophages against bacteria on a minute-timescale

J. Lerchner, D. Mueller-Hagen, H. Roehr,A. Wolf, F. Mertens, R. Mueller, W. Witte,I. Klare

Journal of Thermal Analysis and Calorimetry(2011)

引用 16|浏览5
暂无评分
摘要
Rapid detection of antibiotic resistances of clinical bacterial strains would allow an early selective antibiotic therapy and a faster intervention and implementation of infection control measurements. In clinical practice, however, conventional antibiotic susceptibility tests of bacteria often need 24 h until the results are obtained. The metabolic heat production of bacteria is an excellent possibility to record their physiological activities and could therefore be used for a rapid discrimination of bacterial strains which are resistant or non-resistant to antibiotics and also to lytic bacteriophages, respectively. Unfortunately, conventional calorimeters suffer from need of comparably large volumes of bacterial suspensions are characterised by slow operation and high costs which restrict their application in clinical laboratories. The present paper demonstrates that a new type of calorimeters developed on silicon-chip technology enables the detection of antibiotic resistances on a minute-timescale. For this reasons, a prototype chip calorimeter was used which sensitivity is 20 nW related to the heat production of about 10 4 bacteria. For a clear discrimination of antibiotic resistance about 10 5 bacteria are required. The antibiotic resistances and susceptibilities of different strains of Staphylococcus aureus to cefoxitin and the sensitivities of S. aureus DSM 18421 and E. coli DSM 498 to a mixture of two bacteriophages were studied. Comparing the heat productions of cultures incubated with antibiotics or bacteriophages to those without these antibacterial preparations enabled a clear discrimination of resistant and non-resistant strains already after totally 2 h.
更多
查看译文
关键词
Chip calorimetry,Metabolic heat rate,Rapid susceptibility testing of bacteria,Antibiotics and bacteriophages
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要