A Nondestructive Technique for Predicting the In Situ Void Ratio for Marine Sediments

MARINE GEORESOURCES & GEOTECHNOLOGY(2008)

引用 6|浏览4
暂无评分
摘要
This study tests the hypothesis that the in situ void ratio of surficial marine sediments may be predicted from shear wave velocity-depth data with a reliability equal to that of other methods currently available. Shear wave velocity is fundamentally controlled by the number of grain-to-grain contacts per unit volume of material and by the effective stress across those contacts. In this study, three previously established empirical formulae are used to predict void ratio from velocity-depth data. Field data were acquired along a transect off the northern Californian coast across which water depth increased from 35 to 70 m and seafloor sediment type varied from sand to silty-sand, respectively. A towed seafloor sled device was used to collect shear wave refraction data, and a marked, systematic decrease in velocity was observed along the line, ranging from 35-70 m/s for the coarse, near-shore material to 25-40 m/s for the finer, offshore deposits. Void ratios predicted from these velocities were compared with data measured directly from box-core samples. Of the formulae used for prediction, two agree remarkably well with the control data. Both predicted and control values increase from 0.6-0.8 for the sandy material to 1.1-1.5 for the silty-sand. Thus, this study does not disprove the hypothesis set and demonstrates the potential of field shear wave velocity-depth data as a means of delineating spatial variation in void ratio for surficial marine sediments in a remote, nondestructive manner.
更多
查看译文
关键词
Eel River,in situ,marine sediments,shear wave velocity,STRATAFORM,void ratio
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要