Floating-point sparse matrix-vector multiply for FPGAs.

FPGA(2005)

引用 135|浏览18
暂无评分
摘要
ABSTRACTLarge, high density FPGAs with high local distributed memory bandwidth surpass the peak floating-point performance of high-end, general-purpose processors. Microprocessors do not deliver near their peak floating-point performance on efficient algorithms that use the Sparse Matrix-Vector Multiply (SMVM) kernel. In fact, it is not uncommon for microprocessors to yield only 10--20% of their peak floating-point performance when computing SMVM. We develop and analyze a scalable SMVM implementation on modern FPGAs and show that it can sustain high throughput, near peak, floating-point performance. For benchmark matrices from the Matrix Market Suite we project 1.5 double precision Gflops/FPGA for a single Virtex II 6000-4 and 12 double precision Gflops for 16 Virtex IIs (750Mflops/FPGA).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要