Infection spread in wireless networks with random and adversarial node mobilities.

MOBIHOC(2008)

引用 6|浏览29
暂无评分
摘要
ABSTRACTWe study the process of the spread of an infection among mobile nodes moving on a finite, grid based map. A random walk and a novel adversarial model are considered as two extreme cases of node mobility. With N nodes, we present analytical and simulation results for both mobility models for a square grid map with size √G × √G. A key finding is that with random mobility the total time to infect all nodes decreases with N while with an adversarial model we observe a reverse trend. Specifically, the random case results in a total infection time of Θ(GlogGlogN/(N) as opposed to the adversarial case where the total infection time is found to be Θ(√(Glog(N). We also explore the possibility of emulating such an infection process as a mobile interaction game with wireless sensor motes, and the above results are complimented by traces obtained from an empirical study with humans as players in an outdoor field.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要