Strategy for the fine characterization of glycosyltransferase specificity using isotopomer assembly

Nature Methods(2007)

引用 25|浏览4
暂无评分
摘要
Glycosylation, which represents the most complex posttranslational modification (PTM) event during protein maturation, has a vital role in biological processes. Glycan biosynthesis is orchestrated by numerous glycosyltransferases, each displaying different selectivities for multiple reaction sites. The precise specificities of these enzymes have been difficult to study because of the lack of available substrates of defined structure and problems associated with the analyses. Moreover, the analysis of glycans is extremely difficult owing to the structural complexity of the glycan chain. Here we describe a new strategy for the fine characterization of enzyme specificity using substrate isotopomer assemblies. Because isotopomer assemblies contain a sugar residue that is position-specifically labeled with a stable isotope, we can use tandem mass spectrometry (MS/MS) to assign the structure of positional isomers generated by glycosylation. We demonstrated the analysis of substrate specificities of five β4-galactosyltransferases (β4GalT-I, -II, -III, -IV and -V) using our strategy.
更多
查看译文
关键词
Life Sciences,general,Biological Techniques,Biological Microscopy,Biomedical Engineering/Biotechnology,Bioinformatics,Proteomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要