Prediction and Relation of Thermal Conductivity with Average Relative Atomic Mass and Density for Semiconducting Compound Functional Crystal Materials

JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS(2014)

引用 4|浏览11
暂无评分
摘要
Thermal conductivity plays an important role in dominating a functional material's behavior in heat conduction processes and its applicability. Thus it is important to develop a prediction method for thermal conductivity to improve the thermal design and manufacturing processes of functional materials. According to the microscopy theories of heat conduction and the Koop-Neumann Law, a new method of predicting the thermal conductivity in close relationship to the average relative atomic mass and density of semiconducting compound functional crystals materials is developed in this paper. A new formula for calculating thermal conductivity that results in a simple but accurate approach is proposed. The thermal conductivities calculated using the formula are compared with the values obtained by experimental measurement and found to be in agreement for many semiconducting compound functional crystals and ceramic materials. It is discovered in further analysis that the larger the Average relative atomic mass and density are, the more accurately the thermal conductivity is predicted. Such a prediction method for thermal conductivity is likely to be more useful in the computerized analogy practice of heat transfer, where the objective is to provide reference data of thermal conductivity to improve the fabrication and thermal design of semiconducting compound functional crystals and ceramic materials.
更多
查看译文
关键词
thermal conductivity,prediction,semiconducting compound,functional crystals materials,average relative atomic mass,average atomic density
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要