The design for the LCLS RF photoinjector

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment(1999)

引用 25|浏览31
暂无评分
摘要
We report on the design of the RF photoinjector of the Linac Coherent Light Source. The RF photoinjector is required to produce a single 150 MeV bunch of ∼1 nC and ∼100 A peak current at a repetition rate of 120 Hz with a normalized rms transverse emittance of ∼1π mm-mrad. The design employs a 1.6-cell S-band RF gun with an optical spot size at the cathode of a radius of ∼1 mm and a pulse duration with an rms sigma of ∼3 ps. The peak RF field at the cathode is 150 MV/m with extraction 57° ahead of the RF peak. A solenoidal field near the cathode allows the compensation of the initial emittance growth by the end of the injection linac. Spatial and temporal shaping of the laser pulse striking the cathode will reduce the compensated emittance even further. Also, to minimize the contribution of the thermal emittance from the cathode surface, while at the same time optimizing the quantum efficiency, the laser wavelength for a Cu cathode should be tunable around 260 nm. Following the injection linac the geometric emittance simply damps linearly with energy growth. PARMELA simulations show that this design will produce the desired normalized emittance, which is about a factor of two lower than has been achieved to date in other systems. In addition to low emittance, we also aim for laser amplitude stability of 1% in the UV and a timing jitter in the electron beam of 0.5 ps rms, which will lead to less than 10% beam intensity fluctuation after the electron bunch is compressed in the main linac.
更多
查看译文
关键词
RF photoinjector,Linac coherent light source
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要