Effects of a prestrained InGaN interlayer on the emission properties of InGaN/GaN multiple quantum wells in a laser diode structure

CHINESE PHYSICS B(2013)

引用 9|浏览60
暂无评分
摘要
The electroluminescence (EL) and photoluminescence (PL) spectra of InGaN/GaN multiple quantum wells (MQWs) with a prestrained InGaN interlayer in a laser diode structure are investigated. When the injection current increases from 5 mA to 50 mA, the blueshift of the EL emission peak is 1 meV for the prestrained sample and 23 meV for a control sample with the conventional structure. Also, the internal quantum efficiency and the EL intensity at the injection current of 20 mA are increased by 71% and 65% respectively by inserting the prestrained InGaN interlayer. The reduced blueshift and the enhanced emission are attributed mainly to the reduced quantum-confined Stark effect (QCSE) in the prestrained sample. Such attributions are supported by the theoretical simulation results, which reveal the smaller piezoelectric field and the enhanced overlap of electron and hole wave functions in the prestrained sample. Therefore, the prestrained InGaN interlayer contributes to strain relaxation in the MQW layer and enhancement of light emission due to the reduction of QCSE.
更多
查看译文
关键词
electroluminescence,quantum-confined Stark effect,InGaN/GaN quantum wells,laser diode
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要