Molecular basis for increased susceptibility of isolates with atazanavir resistance-conferring substitution I50L to other protease inhibitors.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2005)

引用 55|浏览9
暂无评分
摘要
Protease inhibitors (PIs) are highly effective drugs against the human immunodeficiency virus (HIV), yet long-term therapeutic use is limited by emergence of HIV type 1 (HIV-1) protease substitutions that confer cross-resistance to multiple protease inhibitor drugs. Atazanavir is a highly potent HIV protease inhibitor with a distinct resistance profile that includes effectiveness against most HIV-1 isolates resistant to one or two PIs. The signature resistance substitution for atazanavir is I50L, and it is frequently (53%) accompanied by a compensatory A71V substitution that helps restore viability and increases atazanavir resistance levels. We measured the binding affinities of wild-type (WT) and I50L/A71V HIV-1 proteases to atazanavir and other currently approved PIS (ritonavir, lopinavir, saquinavir, nelfinavir, indinavir, and amprenavir) by isothermal titration calorimetry. Remarkably, we find that all of the PIs have 2- to 10-fold increased affinities for I50L/A71V protease, except for atazanavir. The results are also manifested by thermal stability measures of affinity for WT and I50L/A71V proteases. Additional biophysical and enzyme kinetics experiments show I50L/A71V protease is a stable enzyme with catalytic activity that is slightly reduced (34%) relative to the WT. Computational modeling reveals that the unique resistance phenotype of I50L/A71V protease likely originates from bulky tert-butyl groups at P2 and P2' (specific to atazanavir) that sterically clash with methyl groups on residue L50. The results of this study provide a molecular understanding of the novel hypersusceptibility of atazanavir-resistant I50L/A71V-containing clinical isolates to other currently approved PIs.
更多
查看译文
关键词
catalysis,drug resistance,catalytic activity,binding affinity,thermal stability,computer model,enzyme kinetics,oligopeptides,temperature,amino acid,enzyme,clinical trial,wild type,isothermal titration calorimetry,active site
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要