A Millimeter-Scale Energy-Autonomous Sensor System With Stacked Battery and Solar Cells

Solid-State Circuits, IEEE Journal of(2013)

引用 123|浏览95
暂无评分
摘要
An 8.75 mm3 microsystem targeting temperature sensing achieves zero-net-energy operation using energy harvesting and ultra-low-power circuit techniques. A 200 nW sensor measures temperature with -1.6 °C/+3 °C accuracy at a rate of 10 samples/sec. A 28 pJ/cycle, 0.4 V, 72 kHz ARM Cortex-M3 microcontroller processes temperature data using a 3.3 fW leakage per bit SRAM. Two 1 mm2 solar cells and a thin-film Li battery power the microsystem through an integrated power management unit. The complete microsystem consumes 7.7 μ W when active and enters a 550 pW data-retentive standby mode between temperature measurements. The microsystem can process temperature data hourly for 5 years using only the initial energy stored in the battery. This lifetime is extended indefinitely using energy harvesting to recharge the battery, enabling energy-autonomous operation.
更多
查看译文
关键词
SRAM chips,electric sensing devices,energy harvesting,energy management systems,microcontrollers,microsensors,secondary cells,solar cells,temperature measurement,temperature sensors,thin film sensors,ARM Cortex-M3 microcontroller processing,Li,SRAM,data-retentive standby mode,energy harvesting,frequency 72 kHz,initial energy storage,integrated power management unit,microsystem temperature sensor,millimeter-scale energy-autonomous sensor system,power 200 nW,power 3.3 fW,power 550 pW,power 7.7 muW,solar cell,stacked battery,temperature -1.6 degC,temperature 3 degC,temperature measurement,thin-film Li battery power,time 5 year,ultralow-power circuit technique,voltage 0.4 V,zero-net-energy operation,CMOS memory integrated circuits,digital signal processors,photovoltaic power systems,transducers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要