Integer programming, lattice algorithms, and deterministic volume estimation

Integer programming, lattice algorithms, and deterministic volume estimation(2012)

引用 32|浏览10
暂无评分
摘要
The main subject of this thesis is the development of new geometric tools and techniques for solving classic problems within the geometry of numbers and convex geometry. At a high level, the problems considered in this thesis concern the varied interplay between the continuous and the discrete, an important theme within computer science and operations research.The first subject we consider is the study of cutting planes for non-linear integer programs. Cutting planes have been implemented to great effect for linear integer programs, and so understanding their properties in more general settings is an important subject of study. As our contribution to this area, we show that Chvátal-Gomory closure of any compact convex set is a rational polytope. As a consequence, we resolve an open problem of Schrijver (Ann. Disc. Math. `80) regarding the same question for irrational polytopes. The second subject of study is that of ellipsoidal approximation of convex bodies. Different such notions have been important to the development of fundamental geometric algorithms: e.g. the ellipsoid method for convex optimization (enclosing ellipsoids), or random walk methods for volume estimation (inertial ellipsoids). Here we consider the construction of an ellipsoid with good \covering" properties with respect to a convex body, known in convex geometry as the M-ellipsoid. As our contribution, we give two algorithms for constructing M-ellipsoids, and provide an application to near-optimal deterministic volume estimation in the oracle model.Equipped with this new geometric tool, we move to the study of classic lattice problems in the geometry of numbers, namely the Shortest (SVP) and Closest Vector Problems (CVP). Here we use M-ellipsoid coverings, combined with an algorithm of Micciancio and Voulgaris for CVP in the ℓ2 norm (STOC `10), to obtain the first deterministic 2O (n) time algorithm for the SVP in general norms. Combining this algorithm with a novel lattice sparsification technique, we derive the first deterministic 2O(n)(1 + 1=/∈) n time algorithm for (1 + ∈)-approximate CVP in general norms.For the next subject of study, we analyze the geometry of general integer programs. A central structural result in this area is Kinchine's flatness theorem, which states that every lattice free convex body has integer width bounded by a function of dimension. As our contribution, we build on the work Banaszczyk, using tools from lattice based cryptography, to give a new and tighter proof of the atness theorem.Lastly, combining all the above techniques, we consider the study of algorithms for the Integer Programming Problem (IP). As our main contribution, we give a new 2O(n) nn time algorithm for IP, which yields the fastest currently known algorithm for IP and improves on the classic works of Lenstra (MOR `83) and Kannan (MOR `87).
更多
查看译文
关键词
fundamental geometric algorithm,general norm,integer programming,convex optimization,compact convex set,new geometric tool,lattice algorithm,deterministic volume estimation,n time algorithm,nn time algorithm,convex geometry,lattice free convex body,convex body
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要